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NUMERICAL ACOUSTIC HULL ARRAY OPTIMIZATION

1. INTRODUCTION

Traditional approaches to acoustic hull array design have focused on the optimization of
desirable beam pattern properties such as the maximization of array gain or the minimization of
sidelobe levels (references 1-3). Unfortunately, such traditional design approaches are applicable
at only a single frequency. In general, the fundamental design goal for a passive acoustic hull
array is an optimal broadband detection capability. To achieve this goal, an optimal hull array
design procedure based on a broadband-detection criterion is required.

A revolutionary approach to large-scale submarine acoustic hull array design that focuses
on the optimization of the beamformer response has recently been developed by Streit and
Wettergren (reference 4). This approach is based upon maximizing the deflection coefficient of
a classical square-law detector under the assumption of a small signal-to-noise ratio (SNR).
Streit and Wettergren have derived an expression for the variance of the output of a square-law
detector whose input is the beamformer output. The noise-only output variance (of the detector)
is the theoretical basis of the objective function, which is appropriate for either correlated or
uncorrelated noise sources that can be distributed either discretely or over a continuum. This
objective function accounts for noise sources, beamforming effects, and structural-acoustic
energy transfer of offending disturbances. (The theoretical development of the objective

function and its gradient are given in reference 4.)

In this report, the optimal hull array design approach of Streit and Wettergren is applied
to obtain the optimum element weight distributions for several line arrays. Although Streit and
Wettergren have formulated the optimization problem to address single-beam as well as
multiple-beam designs, only single-beam designs are considered. In the examples described
here, only point sources of noise are considered. In the case of several noise sources, the
excitations are assumed to be uncorrelated. In contrast, the responses of the array hydrophones
are generally correlated with respect to each other. The power spectra of the noise sources
considered are assumed to be uniform over each frequency band of interest. The results are
obtained for arrays that are conformal with an air-filled, fluid-loaded spherical elastic shell. A
spherical shell is used here because analytical expressions exist for the velocity and pressure
fields (references 5-6).



A nonlinear optimization algorithm is applied to obtain numerical results for the optimal
hull array design. Results are obtained for line arrays that operate over both low- and high-
frequency bands, which correspond to element spacings of a small fraction of a wavelength and
one-quarter to one-half of a wavelength, respectively. In addition, the noise-only beamformer

output spectra are plotted and compared for optimum, uniform, and cosine-tapered weights.



2. DESCRIPTION OF OPTIMIZATION PROBLEM

Consider a hull array consisting of M hydrophones that are steered to receive an incoming
plane wave in the direction described by the unit vector g? ;- Under low SNR conditions, the
deflection coefficient d for the beam steered in the look direction é ; is directly proportional to
the ratio of the total signal power in that beam to the standard deviation of the square-law
detector output waveform (under the noise-only hypothesis) (reference 4). Under the
assumptions that é ; is exactly the signal-arrival direction, that the incoming plane wave excites
only the hydrophones and not the hull, and that the angular response of each hydrophone is
omnidirectional with a flat spectral response, Streit and Wettergren (reference 4) have shown that

the optimum deflection coefficient is found by solving the following minimization problem:

wERM

fmax
min j Vi fiw,E) df ¢))

Jmin

subject to the linear equality constraint

M
PIRTES )

m=1

and the non-negative constraint on the hydrophone weights

w,20, m=1,2,...M. (3

In equation (1), fis the frequency in Hertz (Hz), the frequency band f,,;, < f < f,,.. denotes
the bandwidth of the receiver, w = [w, w,, ..., w M]T is the column vector of element
(hydrophone) weights, and V denotes the (noise only) beamformer output spectrum. The
objective function in equation (1) is proportional to the variance of the output of the square-law
detector under the noise-only hypothesis. It should be noted that equation (1) is a modification
of the objective function derived by Streit and Wettergren (reference 4) and is more suitable for
obtaining numerical results. The derivation of equation (1) from the original objective function
in reference 4 is given in appendix A. Formulas for the components of the gradient of the

objective function are also given in appendix A.

The optimization problem involves a nonlinear objective function subject to a linear
equality constraint. The unknown real variables in equation (1) are the M hydrophone weights




w,,m=1,2, .., M, expressed in terms of an M-dimensional real vector w. Numerical results

for the optimization model are obtained through use of the nonlinear programming algorithm
NPSOL developed at Stanford University (reference 7). NPSOL uses a sequential quadratic
programming (SQP) algorithm in which the search direction is the solution of a quadratic
programming (QP) subproblem. SQP algorithms are generally superior to gradient descent
methods because they exhibit a higher rate of convergence in the vicinity of the solution
(references 8 and 9). In addition, an SQP algorithm is well suited to this application because the
objective function is quartic in the element weights. NPSOL has been successfully applied in the

beam pattern optimization of conformal antenna arrays (reference 10).

A FORTRAN 77 driver program was written to apply NPSOL to the acoustic hull
array optimization problem. For a given array, the driver program reads in the array element
coordinates and the spectral Green’s function (or transfer function) associated with a given noise
source at various frequencies across the band of interest. The driver program then calls NPSOL,
resulting in an optimum set of weights. The optimization results are validated by checking them
for various starting points. In the present optimization problem, the objective function and its
gradient are evaluated via numerical integration. The method of overlapping parabolas
_ integration rule (reference 11) is applied here in order to perform the integration in the case
where the spectral Green’s functions are obtained at unequally spaced frequencies. A derivation
of the overlapping parabolas integration rule is given in appendix B. A comparison of the
performance of the overlapping parabolas rule with the trapezoidal and Simpson’s rules is also

given in appendix B.




3. POINT-EXCITED, FLUID-LOADED SPHERICAL SHELL

This report considers an air-filled, fluid-loaded spherical elastic shell of radius a and shell
thickness £ as shown in figure 1. The sphere is excited by a time-harmonic point force located at
the north pole of the sphere. For the examples considered in this report, the diameter of the
sphere is 15 ft (a = 7.5 ft = 2.286 m) and the shell thickness to radius ratio #/a is 0.011. The
spherical geometry was chosen because analytical formulas can be derived for the velocity and
pressure fields. Two array examples are examined here, i.e., a line array centered at the antipode
(6=180°), as shown in figure 2a, and a line array centered at = 140°, as shown in figure 2b.

Time-
Harmonic
Point Force

Spherical
Shell

Figure 1. Point-Excited, Air-Filled, Spherical Elastic Shell in a Fluid

A set of MATLAB® programs has been written by Professor Peter Stepanishen of the
University of Rhode Island to compute the velocity and pressure fields for an in-vacuo, or fluid-
loaded, spherical elastic shell (air filled) that is excited by a time-harmonic point force located at
the north pole of the shell (figure 1) (reference 6). Of particular importance to the beamformer
optimization code (used to generate the results presented in this report) is the pressure field along
the surface of the elastic shell. The transfer function H(f; p,,, 4. E « )» Which is defined in
appendix A, is the surface pressure at a point p,, on the shell surface that is produced by a time-
harmonic (at a frequency f) point force located at a point g;, on the surface of the shell and
oriented along the ¢ ; direction.




Time-
Harmonic
Point Force

Time-
Harmonic
Point Force

No. 11

Figure 2b. Eleven-Element Line Array Centered at 6 = 140°




Stepanishen’s MATLAB programs were developed for two purposes, i.e., to provide
results for the validation of a finite-element code that is required for producing transfer functions
for a more general geometry and to generate the transfer functions needed for the optimization
results presented in this report. The MATLAB programs implement some analytical formulas
for the structural-acoustic velocity and pressure fields that are expressed in terms of

eigenfunction expansions.

The analytical formulas for the velocity field of the shell and the corresponding pressure
field that are implemented in the MATLAB programs were derived by Stepanishen and
Wettergren (reference 6). These formulas result from the solutions of the equations of motion
for the shell. The normalized equations of motion for the shell, when immersed in a fluid, can be
expressed as (reference 6)

Lll L12
L21 L22

F*(x)
F*(x)

—a
h

U(x)
W(x)

U(x)
-Q? [ W(x)

al O
“h [P(x)} ’ @

where x = x(a,6) denotes a point on the middle surface of the spherical shell and 6 denotes the
polar angle in spherical coordinates. The terms L, denote partial differential operators in
spherical coordinates while U(x) and W(x) represent the in-plane and normal displacements,
respectively, of the middle surface of the shell. A steady-state time-harmonic field dependence
¢™ has been assumed in equation (4), where Q = 2nfalc, 1s the normalized frequency, c, is the
speed of sound in the shell, and i = ¥=1 . The force density terms F*(x) and F*(x) in equation (4)
represent the mechanical excitations on the shell while P(x) denotes the acoustic pressure that
acts on the shell as a result of the nonzero normal velocity of the shell.

For a point-force excitation at 8= 0 (figure 1), the force density terms in equation (4) are

F(x)=0, (5a)

F,4(6)

W —
F' ) =55na

(5b)

where F, denotes the amplitude of the force and ¢ denotes the Dirac delta function. Substituting

the excitations (5a) and (5b) into equation (4), Stepanishen and Wettergren have shown

(reference 6) that the surface pressure can be expressed as

2 ) h(Qc /c,)
Py =i Lo 3 QDR p g g) 000 6)
Pplp =0 Z)'+Z, h(Qc lc,)




where p, and p, denote the densities of air and the shell, respectively, c, is the speed of sound in
air, Z, is the modal radiation impedance, Z ;)1 is the total modal mechanical impedance, P is the
Legendre polynomial of order s, and A, and h,'s are the spherical Hankel function (of the first or
second kind) and its derivative, respectively. Formulas for Z, and Z ;’)l are given in reference 6.
Stepanishen and Wettergren have shown that their formulas are equivalent to the existing

classical formulas given in Junger and Feit (reference 5).

Expression (6) neglects structural damping. Without structural damping, the denominator
of equation (5) will vanish at each resonant frequency Q_, resulting in an unrealistic infinite
surface pressure. Small losses can be accounted for through the multiplication of the speed of
sound in the shell ¢, by 1 + i), where 7); represents the structural damping or loss factor, with
7, « 1 (reference 5). The effect of the replacement of ¢p by ¢,(1 +i7]) in equation (6) is the
removal of resonant frequencies from the real frequency axis and, thus, remove the singularities
from the pressure field. According to Stepanishen (reference 12), typical values for the structural
damping factor range from 0.01 to 0.1.

The effect of structural damping on the integrand of the objective function V2(f;w, .73': )
over two different frequency bands is shown in figures 3a and 3b . In these plots, V(f;w, é )
was computed for the line array described in figure 2a with uniform weights and a beam steered
at the look angle 6, = 180°. Figure 3a shows the integrand plot over the low-frequency band
(250 Hz £ f < 1000 Hz) while figure 3b applies to the high-frequency band (1723 Hz < f < 3446
Hz). The plots indicate the existence of numerous resonances across both frequency bands.
Attempts to evaluate the objective function over either frequency band with no structural
damping did not produce a convergent result. The plots show that for very small damping
(77, = 0.01) the resonances are attenuated significantly. Most of the resonant peaks are removed
from V2(f;w, é p for a structural damping factor of 0.05. This damping factor will be used in the
examples that follow, because the integrand plots over both frequency bands are fairly smooth.

Expression (6) involves an infinite summation over the various modes of the spherical
elastic shell. Stepanishen and Wettergren (reference 6) have determined that 150 modes (terms
in the summation) are more than sufficient for convergence of the velocity and pressure fields

over the frequency bands of interest.
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4. OPTIMIZATION RESULTS

The 11-element line array considered here is conformal to the surface of the 15-ft
diameter air-filled, fluid-loaded spherical shell described in figure 1. The array elements are
equally spaced and extend across a 60° arc along the sphere. For computational convenience, the
array is placed along the xz-plane. As previously stated, two cases are considered in this report:
the line array centered at the antipode (6= 180°) as shown in figure 2a and the line array
centered at 8= 140° as shown in figure 2b. The 6= 140° case was chosen because the array has
no element located at the antipode. In each example, the spherical shell has a time-harmonic

point force (noise source) located at 8= 0°.

The optimization of each array is performed over two different frequency bands. Over
the low-frequency band of 250 Hz < f < 1000 Hz, the spacing s between elements is 0.0364 < s
< 0.1454, where A is the acoustic wavelength in the fluid. The speed of sound in the fluid is
1500 m/s. The high-frequency band of 1723 Hz < f < 3446 Hz was chosen so that the element
spacing is A/4 <s < /2. In each example considered, the optimum weight distribution will be
plotted along with the corresponding noise-only beamformer output spectrum.

4.1 EXAMPLES FOR LOW-FREQUENCY BAND (250 Hz < f < 1000 Hz)

In considering the 11-element line array centered at 8= 180° with a time-harmonic point
force located at 8= 0°, it is noted that the resulting transfer function magnitude plots at the
locations of elements 1 to 3 and elements 4 to 6, are shown in figures 4a and 4b, respectively.
Because the transfer function is axisymmetric for a point source located at 8= 0°, the transfer
functions for elements 7 to 11 are not plotted. Of particular importance in figures 4a and 4b is
that the transfer function at the center element (no. 6) is noticeably larger than at the other
element locations across most of the frequency band. This peculiarity is attributed to the fact
that it lies at the antipodal point with respect to the source, which will have a noticeable impact
on the optimization results as described below.

Figure 5a is a bar graph of the optimum weight distribution for the line array in figure 2a
for a beam steered at the look angle 8= 180°. The weight distribution is unusual because the
minimum weight is at the center element. This can be attributed to the large transfer function

magnitude at the center element location over most of the frequency band. Because the objective

11



function and gradient terms are on the order of 10? for the optimization of the line arrays in
figures. 2a and 2b, they are each multiplied by 10-3 in the optimization program so that they are
on the order of unity. This scaling of the objective function has no impact on the optimum
solution,; it only improves the numerical convergence. It should also be noted that the scaling

factor for the objective function varies with each example.

The weight distribution in figure 5a is symmetric with respect to the center element. This
same result was obtained for several feasible starting points (i.e., initial weight distributions that
lie in the allowable domain as defined in equations (2) and (3)). However, it was observed that
some infeasible starting points resulted in the same optimum objective value but different
optimum weight distributions than the one in figure 5a. The reason for this peculiarity is that
the transfer function and the array are each symmetric with respect to the beam-steering angle
6, =180°. Consequently, the same objective function value is obtained for different element
weight distributions such that the sums of the weights of opposing elements with respect to the

center element are the same. This can be expressed mathematically as

Wp+Wip,=cp0 n=1,2,3,4,5. 0

In equation (7), the c,’s are constants. If the weights are further constrained to be symmetric
with respect to the center element, the optimum distribution in figure 5a will be obtained for both

feasible and infeasible starting points.

Figure 5b is the optimum weight distribution for the line array in figure 2a for a beam
steered at the look angle 8, = 150°. The weight distribution still has a minimum at the center
element, but it is asymmetrical with respect to the array center. Note that relatively larger
weights are on the side of the array in which the beam is steered, as expected. The same

optimum weight distribution was obtained for both feasible and infeasible starting points.

Figure 6 shows the line array centered at 8= 180° with three time-harmonic point forces
that are each diametrically opposite with respect to one of the three center elements (numbers 5
to 7). Note that the three forces are in phase and of equal amplitude. The purpose of this
exercise is to see if the optimum weights produced at element numbers 5 and 7 are significantly
reduced from those in figures 5a and 5b. Figures 7a and 7b illustrate the optimum weight
distributions for beams steered at the look angles 6, = 180° and 8, = 150°, respectively. The
graphs show the expected results, i.e, that any element that is located at an antipodal point with

respect to a point source will have a small optimum weight.
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Figure 5. Optimum Weight Distributions for the 11-Element Line Array Described in
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Jor Beam-Steering Angles (a) 6, = 180° and (b) 6, = 150°
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As previously mentioned, the beamformer optimization applied here is based on the
maximization of the deflection coefficient of a square-law detector. Therefore, to describe the
array performance, the signal-only angular response (beam pattern) of the array at particular
frequencies over the band of interest is not suitable. Instead, the array performance is described
in terms of the noise-only beamformer output spectrum V(f). An expression for the noise-only
beamformer output spectrum associated with K point-force excitations is given in appendix A in

terms of the angular frequency @and is rewritten in terms of the frequency fin Hertz as

K M

. 2 C2nf ~
V(f;w,E) =2 N (/) Z W HUF P G50 €0 exp[' —C‘—(p,,,'E,)} : ®)

k=1 m=1

where N,(f) denotes the power spectrum of point source , p,, is the position vector of
hydrophone m, c is the speed of sound, and H(f; p,,,, qx £ &) 1s the transfer function (spectral
Green’s function) relating a point force located at g, and oriented along the 4 « -direction with
the response measured at p,,. Note that (p,,’ E 1)/ ¢ is the time delay for hydrophone m for a
plane wave arrival from direction é ;- The unit vector E ; in the beam-steering direction is

expressed mathematically as
élzfsin 6,cos ¢, + §sin 6, sin ¢, + Zcos 6, 9)

where ¥, y, and Z denote unit vectors along the x-, y-, and z-directions, respectively, and 6, and
¢, denote the polar and azimuthal angles, respectively, of the beam-look direction. (The reader
is referred to the coordinate system described in figure 1.) In the examples described in this
report, the power spectrum N,(f) of each noise source is assumed to be unity across the frequency

band of interest.

Figures 8a and 8b show plots of the noise-only beamformer output spectra for the line
array described in figure 2a as a function of frequency over the low-frequency band for beams
steered in the look-directions €, = 180° and g, = 150°, respectively. In each of these figures, the
beamformer output spectra are plotted for optimum, uniform, and cosine-tapered weights. In
each case, the weights sum to unity (i.e., equation (2) is satisfied). For the array in figure 2a, the
cosine-tapered weights are given as

w,, = b cos [3(6,,1 - Jt)] , %‘ <0, < 7?“ , m=1,2,..,11, (10)
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where the normalization constant b is chosen so that the weights sum to unity. The plots in
figures 8a and 8b show that the optimum weights produce a significant improvement in the
beamformer output across the entire frequency band of interest. The plots also indicate that the
optimum weights result in an improvement of almost two orders of magnitude in the beamformer
output spectrum over the uniform and cosine-tapered weights across much of the frequency band
plotted. This significant improvement will likewise produce an almost two orders of magnitude
improvement in the deflection coefficient. In contrast, the beam patterns for the various weights

would not necessarily show an improvement for the optimum weights.

Figures 9a and 9b show plots of the noise-only beamformer output spectra for the line
array with three noise sources (as described in figure 6) as a function of frequency over the low-
frequency band for beams steered in the look-directions 8, = 180° and §, = 150°, respectively.
The plots indicate a similar improvement in the beamformer output spectrum for the optimum
weights over the uniform and cosine-tapered weights. Note that the beamformer output spectrum
for each weight distribution is larger than the corresponding one plotted in figures 8a and 8b
because there are three times as many noise sources (i.e., K = 3 versus K = 1 in equation (8)).

As shown by Streit and Wettergren (reference 4), the deflection coefficient d for the

beam steered in the look-direction é ; is inversely proportional to the standard deviation of the
square-law detector output waveform under low SNR conditions, i.e.,

> ; (11)
\/f Vi fiw, 51) daf

where the proportionality constant is the signal power S. In the above expression, note that the

integral under the square root is the objective function F(w) for the optimization problem. For a

given weight distribution w and beam-steering-direction é ; » the deflection coefficient index d,, is

fmah
\/f Vz(f w, §l) df

defined as

(12)

19



081 =g 218uy Yooy oy v pataas wvag v Jof V7 24181,y Ul PaqLIdSI(Y KvaLy JUrT Y}
dof suoynqrysiq Y3124 43438 10f (puvg LouanbadJ-mo) v4yoads yndinQ souiofuvag Ku-astoN ‘vg 24ndy

(zH) Aouanbaig
0001  0S6 006 0S8 008 OSL 0O0L 0S9 009 0SS 00S OSyr O0OOF O0SE 00€ OSC

N —— . — ——— =%} S " — == R A G P 0
i . _..u.f ..ﬁ
‘\ ;v ¢ /- ! t
- 1||.._.... ! u/. ¢ ......z ? 4..4 - _ _\ . st
\\ ..n -M ,4/ M ..a \ ﬂ ‘nu d d... M U ”
r \ ) + o ¢ J 1 ' . 4
- A v ~! L x + 0¢S
RO S I ) ! \ M ! 1
A . a0 . h_ \ ‘: __ 4
p.. nu 4 ] ) A 7 T
...M‘ ﬂn. ~ MM _f.. .»\- .n. awn ¢ ..\_x _ s_~ ,nlnu .n?" ..._ WN.
f \ A C [b o A
: y / ! [ - S R
B : : 3 A y sy o[ “ vt
i —— v e " iR TS T Y A
: \.,. \ Vo , ;o 3 * | | S
\ v A RN ]
g 1
Jadej aulsop ---- — , \ Ly .,\,.,_‘ ] 0S1
wIoyuA - - - - - , \ f ]
wnudQ —— \ ]
— | L

MA

20



0ST =9 213uy yoo ayy 1 pas2a3§ wvag v d0f DT 24n31,] Ul PaqLIISI( D.LLY dUr] Y}

dof suonnqrysi(y 1814 042438 10f (puvg Kouanba.,g-moT) v.u2adg ndinQ sdwi0fuvag KuQ-asioN °qg 24nd

0001

(zH) Adouonbaxg

0S6 006 068 008 0SL 00L 0S9 009 0SS 00¢ 0S¥ 410)74 0S¢ 00¢ 08¢
' 1 ' ' T " e e 0
A s“
_—f ™ - 3 Y wwl
. i (R N o
l\ ad L] ._....a . ~ 14 §
-_....s..llt.q _.ffi ;\ ..r....; ‘_. |Il._ |\s~..» \.\ L ”
(\- ' u 1 . _a 'y ! ] 0S
4AI~ g. \a 4_ _s »4 _..n ” -
. uf ! _‘ ! 7 _. §
\--{-. Jfo -, _— ‘s....s _u ...rr_ “
. ,.p * _a ._ SL
! N = i
. .. \ . ) Ay
’ J¢ - ¢.. , .M / .\_r e . ...J s} o .. . h y ~ i 001
VAR AN A A A L L A T
\ S I RO B N FA T N R G
\ v Ay TR ]
1 " : f | =t el
L ,. h. d. Dot . & u ”
0 v - _ { A v v i
lage] aulso) ----— f— . " 0S1
wiopun - - - - - y y ]
wnwidO ——— ]
| | i ] SL1

MDA

21




081 =9 a13uy Yoo ayy 1 Pa12a1s wvag v 40f 9 24nS1,] U1 paqrIdsa( KoLty aury ayp
dof suoynqrysi(q 1312\ 042438 Jof (pung KouanbatJ-no7) vagoads mmdingQ souwiofuvag Kju()-asioN v 24nSy

(zH) Adouanbaig
000L 0S6 006 0S8 008 OSL O0OL 0S9 009 0SS 00S OSFr O00F OSE 00E OST

o~~~ RO A
p
‘._I..IJ X 7
- 4 o Y,
\g oJ J s ‘I' ss b
.._ f' su r, n._ af - u\ ._ u..; _~ B
3 ¢ [} 1 ) . . 1 i
i \ e \ k B g K , \ N \ " ) B 00
.|.|. Mr s..ww 1 ....r. _.s nr __ —_ \.. —, __ “ _~ I __ ]
- - [ - L ) 1 \ PR t 4 f -
7y /- V) SRR -
; : I . ; e - 009
/ \ I ", - ) A
\ o I .
\ } : : : /.. S 7 - f: O I L oos
A : o ,,.\ ! A ,f ! F h._ } _ \ |y
Vo A Vo : $o - SN T
f L) S ; e ) A I [
¥ . — SR 0001
: \ s L : Dol 7
I P ; A 1
L ; || IR ]
sede] 8uIsoQ ---- — LS ,F { ". M , e - 0021
wiopun - - - - - ~ f "w \..\ 1
wnundo ———— \ o -
- ; : 10,41

MDA

22



Jof suoynqrysi(y 181244 v42438 10f (puvg Kouanba,g-mo) v.y2adg nding souriofuvag KuQ

-0SI =g 318uy yooy 3y v pasaars wwag v 40f 9 2un31,] Ul PaqLIdSI(] ADLLY JUr] Y]

-aS10N “q6 24n31,]

(zH) Aouanbaig
000T 0S6 006 0S8 008 OSL 00L 0S9 009 0SS 00S OSyr 00Oy 0OSE 00E  0OSC
— y Tme—s T ﬂ _ H“T .-X.rra.i%..\\\l : R ! O
o
per - +1-00C
" " / _s - 4
\..__ ,p . ,,, o .~ "y M __ .
- "\ et pY ,-: b =" S i 5, . ¢ \_ 4
ar - ..\ ,_ ~ ’ F_ _. _, \. ., _. v 00¥
. \ ¢ 1 (I 1 .
1 - -._f ” ..: .. u ., ‘\ ! .“ t. “ 7
\ . o Jl.‘ ur w.. - [N ¢ -.\_ o
] . : et 009
; \ | \ :
/ ., 1 \ i
. 4. - \ J_-.s.r ,..p.. = A \__‘ _M.J_ & Mn.f M ,~. 1 008
:.. \ .L B . ' : M N .u ~_-.¢ . . ". .
; . Do Al ; : “ V-
j TN BYe
M o S - w N : \ 0001
\ i ﬂ \ Vo ~ Ny ”
Jode] auiso) ----— . ' ~ mg ~.-;_ ". r" ] 00¢1
woun - - = - - f [ L ﬁ 1
WNWRAQ e ’ Y ]
w _ _ 00¥1

MDA

23




Because the deflection coefficient is proportional to the SNR at the